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Orthorhombically distorted perovskite manganites, RMnO3 with R being a trivalent rare-earth ion, exhibit a
variety of magnetic and electric phases including multiferroic �i.e., concurrently magnetic and ferroelectric�
phases and fascinating magnetoelectric phenomena. We theoretically study the phase diagram of RMnO3 by
constructing a microscopic spin model, which includes not only the superexchange interaction but also the
single-ion anisotropy �SIA� and the Dzyaloshinsky-Moriya interaction �DMI�. Analysis of this model using the
Monte Carlo method reproduces the experimental phase diagrams as functions of the R-ion radius, which
contain two different multiferroic states, i.e., the ab-plane spin cycloid with ferroelectric polarization P �a and
the bc-plane spin cycloid with P �c. The orthorhombic lattice distortion or the second-neighbor spin exchanges
enhanced by this distortion exquisitely controls the keen competition between these two phases through tuning
the SIA and DMI energies. This leads to a lattice-distortion-induced reorientation of P from a to c in agreement
with the experiments. We also discuss spin structures in the A-type antiferromagnetic state, those in the
cycloidal spin states, origin and nature of the sinusoidal collinear spin state, and many other issues.
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I. INTRODUCTION

Rare-earth manganites with orthorhombically distorted
perovskite structure, RMnO3 with R being a trivalent rare-
earth ion, have been subject to intensive studies since the
multiferroic phases, in which magnetism and ferroelectricity
simultaneously emerge, were found in some of these
materials.1,2 This class of materials exhibits a variety of mag-
netic and electric phases as a function of ionic radius of the R
ion. The R-site variation controls magnitude of the ortho-
rhombic lattice distortion �the GdFeO3-type distortion� �see
Fig. 1�a��, i.e., tilting angles of the MnO6 octahedra become
larger and the perovskite lattice is more significantly dis-
torted with a smaller-sized R ion. An experimentally ob-
tained phase diagram in Refs. 3 and 4 exhibits A-type
antiferromagnetic �AFM�A�� ground states in the weakly dis-
torted materials with R=La,Pr, . . . ,Eu,Gd, while E-type an-
tiferromagnetic �AFM�E�� ground states in the strongly dis-
torted materials with R=Ho, . . . ,Yb,Lu �see Fig. 1�b��.
Sandwiched by these two regions, a spiral spin order with
concomitant ferroelectricity is observed in the moderately
distorted materials with R=Tb and Dy. Anticipated coupling
between spins and electric dipoles �magnetoelectric cou-
pling� makes these materials interesting because of possible
technical applications.

In TbMnO3, for example, a sinusoidal collinear order of
Mn spins occurs at the Néel temperature TN

Mn�41 K.5,6 In
this phase, the Mn spins are aligned along the b axis with an
incommensurate propagation wave vector qm

Mn= �0,0.28,1�
in the Pbnm orthorhombic unit cell. Below TC�28 K, ferro-
electricity shows up along the c axis concomitantly with a
magnetic transition into a transverse spiral �cycloidal� spin
order with Mn spins rotating within the bc plane.7 Upon
further decreasing temperature, ordering of the f-electron
moments on the rare-earth �Tb� ions takes place at TN

R

�7 K with a different propagation wave vector qm
R ��0,

0.42,1�. DyMnO3 shows similar orderings and transitions
with TN

Mn�39 K, qm
Mn��0,0.36,1�, TC�19 K, TN

R �5 K,
and qm

R ��0,0.5,1�.8
The ferroelectricity in these materials can be microscopi-

cally explained by the spin-current model �in other words,
inverse Dzyaloshinsky-Moriya �DM� mechanism� proposed
by Katsura-Nagaosa-Balatsky �KNB�.9 Overlaps of elec-
tronic wave functions between adjacent two atomic sites �i
and i+1� with mutually canted spins �Si and Si+1� can gen-
erate a local electric polarization,

pi = Aei,i+1 � �Si � Si+1� , �1�

where ei,i+1 denotes the unit vector connecting these two
sites, and A is a constant determined by the spin-exchange
and spin-orbit interactions. The cycloidal spin order in
RMnO3 is expected to induce a uniform spontaneous polar-
ization P as a sum of the local polarizations pi in the direc-
tion perpendicular to the spiral propagation vector � �b� and
the spin-helicity vector, hs=�iSi�Si+1. Consequently, the
ferroelectric polarization parallel to the a axis �Pa� is ex-
pected in the ab-plane cycloidal spin structure, while in the
bc-plane cycloidal spin structure, that parallel to the c axis
�Pc� is expected �see Fig. 2�. Direct evidence for the inverse
DM mechanism was recently demonstrated by controlling
the spin-helicity vector in TbMnO3 with an external electric
field.10 Similar theoretical results have also been obtained
independently in Refs. 11 and 12. In particular, Sergienko
and Dagotto discussed that a spiral spin order can induce
uniform shifts of the oxygen ions through the spin-lattice
coupling via the DM interactions, leading to the electric po-
larizations given by Eq. �1�. Recent first-principles calcula-
tions revealed that the Sergienko-Dagotto-type lattice-me-
diated contribution is dominant for the ferroelectric polariza-
tion relative to the KNB type pure-electronic contri-
bution.13,14
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While only the Pc phase with bc-cycloidal spin structure
is observed in the single-rare-earth compounds such as
TbMnO3 and DyMnO3, the Pa phase with ab-cycloidal spin
structure can be observed on the verge of the AFM�A�
phase when we continuously control magnitude of the
GdFeO3-type distortion using a solid solution system
Gd1−xTbxMnO3.15 Moreover, reorientation of the polarization
occurs from Pa to Pc with increasing Tb concentration x �see
Fig. 1�b��. This phenomenon is ascribed to a spin-cycloidal-
plane flop from the ab plane to the bc plane.16

The reorientation of the electric polarization is also ob-
served in another solid solution system Eu1−xYxMnO3.17,18

Phase diagrams of this system were experimentally studied

for compositions 0�x�0.5 as functions of temperature and
Y concentration x �Refs. 17–20� �see Fig. 1�c��. According to
these experiments, the ground state changes approximately at
x�0.2–0.3 from the canted AFM�A� state without long-
range ferroelectric order toward the presumably ab-cycloidal
spin state with Pa. For higher Y concentrations of x�0.4, the
orientation of polarization spontaneously changes from Pc at
higher temperatures toward Pa at lower temperatures. In ad-
dition, the regime of Pc phase increases with increasing x,
which resembles the polarization flop with increasing x in the
Gd1−xTbxMnO3 system. These results indicate that the polar-
ization flop occurs both thermally and by the increase in
GdFeO3-type distortion. These phenomena are caused purely
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FIG. 1. �Color online� �a� Perovskite structure with GdFeO3-type distortion. The unit cell contains four Mn ions, which are referred to
as Mn A, Mn B, Mn C, and Mn D, respectively. �b� Experimentally obtained magnetoelectric phase diagram of RMnO3 in plane of
temperature and ionic R-site radius reproduced from Refs. 3 and 15. The region between Gd and Tb was studied using a solid solution system
Gd1−xTbxMnO3 �Ref. 15�. Averaged R-site radii for the solid solutions are deduced by interpolation. Insets show spin configurations of the
A-type and E-type antiferromagnetic �AFM�A� and AFM�E�� states. Along the c axis, spins stack antiferromagnetically. PE and FE denote
paraelectric and ferroelectric phases, respectively. In the AFM�E� phase, possible ferroelectricity due to an exchange-striction mechanism
was theoretically proposed �Refs. 21–23�, and it was confirmed experimentally �Refs. 24–26�. �c� Experimentally obtained magnetoelectric
phase diagram of a solid solution system Eu1−xYxMnO3 in plane of temperature and Y concentration x reproduced from Ref. 18. Insets show
spin configurations of the ab-cycloidal, bc-cycloidal, and sinusoidal collinear states. Spin configuration of the AFM�A� state with weak
ferromagnetism �WFM� seen along the a axis is also shown.
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by interactions among the Mn 3d spins since the
Eu1−xYxMnO3 system is free from the influence of f-electron
moments on the R ions.

The above experimental results tell us that the manganite
system exhibits the AFM�A�, ab-cycloidal, bc-cycloidal, and
AFM�E� phases successively as the GdFeO3-type distortion
increases. In particular, the cycloidal-plane flop between ab
and bc is quite important since the plane is related to the
orientation of electric polarization. According to Ref. 3, en-
hanced tilting of the MnO6 octahedra leads to an increase in
the second-neighbor antiferromagnetic exchanges �J2�,
which compete with the nearest-neighbor ferromagnetic ex-
changes �J1� in the ab plane. Resulting weakening of the
effective in-plane ferromagnetic interactions causes reduc-
tion in the Néel temperature in the AFM�A� phase as the
�averaged� R-site radius decreases. We can attribute the
emergence of the long-wavelength antiferromagnetic orders
or that of the spiral spin orders to magnetic frustration
caused by the above competition. The spiral spin order can
be reproduced by a simple J1-J2 Heisenberg model.27–29

Within this model, however, there exists degeneracy and the
cycloidal plane cannot be specified so that the observed
cycloidal-plane flop cannot be explained.

Below we summarize puzzling issues in the experimental
phase diagrams of RMnO3.

�a� An issue how the bc-cycloidal order is stabilized in the
strongly distorted materials despite the fact that in the perov-
skite manganites, the c axis is always a hard magnetization
axis.

�b� A mechanism of the spin-cycloidal-plane �electric-
polarization� flop with increasing GdFeO3-type distortion.

�c� A mechanism of the thermally induced cycloidal-plane
flop or an issue why the bc-cycloidal phase appears above
the ab-cycloidal phase in temperature.

�d� Origin and nature of the sinusoidal collinear phase in
the intermediate temperature region.

�e� An issue why the Mn spins in the AFM�A� and the
sinusoidal collinear states direct along the orthorhombic b
axis.30–34

These issues are interesting not only for potential applica-
tions but also for fundamental physics.

Previously, Kimura et al. theoretically studied the phase
diagram with the use of a two-dimensional J1-J2 Ising
model.3 Although they predicted long-wavelength magnetic
structures between AFM�A� and AFM�E� phases, they inevi-
tably failed to reproduce the cycloidal spin order and the
sinusoidal collinear spin order since they treated the Mn
spins as Ising spins. Recently, Dagotto and co-workers theo-
retically studied the phase diagram and the cycloidal spin
order by employing a two-orbital double-exchange model on
the two-dimensional lattice with some additional terms.11,35

In Ref. 11, they incorporated the lattice elastic energy as well
as the DM interactions with vectors on the Mn-O-Mn bonds
coupling to the oxygen displacements but neglected the
second-neighbor spin exchanges. They discussed that the cy-
cloidal spin order is stabilized due to the ferri-type arrange-
ment of DM vectors realized by uniform shifts of the oxy-
gens. In Ref. 35, they considered quite weak next-neighbor
spin exchanges but neglected the DM interactions. They re-
produced the successive emergence of three magnetic phases
in the ground state, i.e., AFM�A�, cycloidal, and AFM�E�
phases. However, in those studies, neither the spin-cycloidal-
plane flop nor the sinusoidal collinear state was reproduced.
In addition, the issues on the easy-axis spin anisotropy in the
AFM�A� phase and the emergence of bc-cycloidal spin state
were not addressed. Therefore, all of the above-listed issues
still remain unresolved.

In this paper, we theoretically investigate the magneto-
electric phase diagrams of RMnO3 in the absence of external
magnetic field. We construct a microscopic spin model,
which is basically a classical S=2 Heisenberg model on a
cubic lattice but includes some additional magnetic anisotro-
pies and interactions.36 By analyzing this model using the
Monte Carlo method, we obtain phase diagrams in good
agreement with experiments. We discuss a number of puz-
zling issues on the magnetoelectric phase diagrams of the
perovskite manganites listed above by particularly focusing
on the mechanism of the spin-cycloidal-plane flop. We reveal
that the DM interaction between spins neighboring along the
x or y axis as well as the single-ion anisotropies, because of
which the c axis becomes a hard magnetization axis, favor
the ab-cycloidal spin state with Pa, while the DM interaction
between spins neighboring along the c axis favors the
bc-cycloidal spin state with Pc. Their competition turns out
to be controlled by the GdFeO3-type distortion, or equiva-
lently by the second-neighbor exchanges J2 enhanced by this
lattice distortion. This leads to a polarization flop from Pa to
Pc with decreasing R-site radius in agreement with the ex-
periments.

Here we note that although recent intensive experiments
on the present manganites have uncovered rich phase dia-
grams and phenomena also in the presence of magnetic
fields,1,18,37–53 these issues are beyond the scope of this pa-
per. However, a microscopic model constructed in this paper
would offer a very powerful basis for studying the magnetic-
field effects in the multiferroic manganites as well.

Moreover, several fascinating phenomena originating
from the strong magnetoelectric coupling have been ob-
served in the multiferroic phases in RMnO3 and have at-
tracted appreciable interest as listed below.

�a� The polarization flop can be induced also by an exter-
nal magnetic field. In TbMnO3 and DyMnO3, for instance,

b

a

c

b

a

c

P//c

P//a

(a)

(b)

hs //c

hs //a

FIG. 2. �Color online� �a� Relationship between the spin-helicity
vector hs=�iSi�Si+1 and the spontaneous electric polarization P in
the ab-cycloidal spin structure expected from the spin-current
model �Refs. 9, 11, and 12�, and �b� that in the bc-cycloidal spin
structure.
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the electric polarization flops from Pc to Pa by applying a
magnetic field along the a or b axis.1,37 On the other hand,
the polarization in Eu1−xYxMnO3 with x=0.4–0.5 flops from
Pa to Pc with a magnetic field along the a axis.18 In addition,
control of the electric polarization vector using the rotating
magnetic field was demonstrated experimentally.38,39

�b� There are experimental54,55 and theoretical56,57 argu-
ments on possible low-lying spin excitations activated by the
electric-field component of the light �termed electromagnon�.
Far-infrared spectroscopy observed corresponding light ab-
sorptions in the ferroelectric phases in TbMnO3,55,58–60

DyMnO3,61 GdMnO3,55,62 Gd1−xTbxMnO3,63 and
Eu1−xYxMnO3 �Refs. 64 and 65� at terahertz frequencies.

�c� Giant magnetocapacitance was observed at a threshold
magnetic field for polarization flop in DyMnO3,1,37,40 and its
mechanism has attracted interest.41,42 On the basis of the
dielectric-dispersion measurements, this phenomenon was
attributed to the electric-field-driven motion of the multifer-
roic domain wall between domains with orthogonal spin-
cycloidal planes and concomitant orthogonal ferroelectric
polarizations.41 It was revealed that the macroscopic motion
of the multiferroic domain wall is possible with electric
fields of practical magnitude, which enables the electric con-
trol of magnetic domains.

It is widely recognized that interplay between charge, or-
bital, spin, and lattice degrees of freedom is a key to under-
standing of these phenomena, similarly to the colossal mag-
etoresistance in the hole-doped RMnO3.66 Therefore,
construction of a microscopic model would represent a very
important basis to approach these issues. Upon construction
of a model, whether the experimental phase diagrams can be
reproduced or not shall be an efficient test for its validity.

Furthermore, new insights into the magnetoelectric cou-
pling obtained here would be useful when we study the re-
lated phenomena not only for the present manganites but also
for other newly discovered multiferroic materials. The mag-
netically induced ferroelectricity has recently been found in
several transverse-spiral magnets67,68 such as Ni3V2O8,69

MnWO4,70,71 LiCu2O2,72,73 LiCuVO4,74 and CuO,75 and also
in a transverse cone-spiral magnet CoCr2O4.76 Furthermore,
it was demonstrated that a conical spin order induced by an
external magnetic field also generates the electric polariza-
tion in ZnCr2Se4 �Ref. 77� and Y-type hexaferrites.78,79 Un-
der this circumstance, clarification of the essential physics
behind the rich phase diagrams and a microscopic descrip-
tion of the magnetoelectric systems in the perovskite manga-
nites have attained increasing importance because the man-
ganite system is the first discovered example, and hence a
prototype of a series of these new multiferroic materials.

The organization of this paper is as follows. In Sec. II, we
construct a microscopic spin model to describe the
Mn 3d-spin system in the perovskite manganites. In Sec. III,
we discuss the calculated results obtained by analyzing this
model in the Monte Carlo simulations. We study phase dia-
grams and properties of several phases in Sec. III B. We
address an issue on the spin-cycloidal-plane flop �or the
electric-polarization flop� in Sec. III C. In Sec. III D, we also
investigate detailed ground-state spin structures of the cy-
cloidal spin states by numerically solving the Landau-
Lifshitz-Gilbert equation. On this basis, we discuss the ex-

perimentally claimed elliptical modulation of the spin
cycloid.10,80 In Sec. III E, by examining effects of the single-
ion anisotropies, we address an issue why spins in the
AFM�A� state and those in the sinusoidal collinear state are
aligned parallel to the b axis. In Sec. III F, we discuss the
nature and origin of the sinusoidal collinear spin phase at
intermediate temperatures. Section IV is devoted to conclu-
sion and discussion. We also explain how we calculate val-
ues of parameters in our model in Appendixes A–C.

II. MODEL AND METHOD

A. Model Hamiltonian

To describe the Mn 3d-spin system in RMnO3, we employ
a classical Heisenberg model with some additional interac-
tions and magnetic anisotropies on a cubic lattice. In this
Hamiltonian, we treat the Mn S=2 spins as classical vectors,
i.e., Si= ��S2−Sc

2cos �i ,�S2−Sc
2sin �i ,Sc� with respect to the

Pbnm a, b, and c axes. The Hamiltonian consists of four con-
tributions as

H = Hex + Hsia + HDM + Hcub, �2�

with

Hex = − Jab�
	i,j


x,y

Si · S j + J2�
	i,j


b

Si · S j + Jc�
	i,j


c

Si · S j , �3�

Hsia = D�
i

S�i
2 + E�

i

�− 1�ix+iy�S	i
2 − S
i

2 � , �4�

HDM = �
	i,j


dij
� · �Si � S j� , �5�

Hcub =
a

S�S + 1��i

�Sxi
4 + Syi

4 + Szi
4 � , �6�

where ix, iy, and iz represent coordinates of ith Mn ion with
respect to the cubic x, y, and z axes. In the following, we
explain each of these terms in detail, including definitions of
other indices and variables.

B. Superexchange interactions

The first term Hex represents superexchange interactions.
This term contains ferromagnetic exchanges Jab on the
Mn-Mn bonds along the x and y axes, antiferromagnetic ex-
changes J2 on the in-plane diagonal Mn-Mn bonds along the
orthorhombic b axis, and antiferromagnetic exchanges Jc on
the Mn-Mn bonds along the c axis �see Fig. 3�a��. The Jahn-
Teller distortion in RMnO3 causes a C-type orbital ordering.
Consequently, the ferromagnetic Jab is caused by the antifer-
roarrangement of eg orbitals in the ab plane, while along the
c axis the antiferromagnetic Jc is caused by the ferro-orbital
stacking. On the other hand, the antiferromagnetic J2 arises
from an exchange path between two Mn eg orbitals in the b
direction via two oxygen 2p orbitals as shown by a dashed
line in Fig. 3�b�. The strength of the second-neighbor ex-
changes J2 increases with increasing GdFeO3-type distortion
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since the distortion enhances hybridization between these
two oxygen 2p orbitals.3,81

It should be mentioned that in other orthorhombic perov-
skite compounds, the strength of the second-neighbor ex-
changes J2 is negligibly weak as compared to that of the
nearest-neighbor exchanges Jab. By contrast, in the mangan-
ites, these two exchanges J2 and Jab are comparable in
strength, and the second-neighbor exchanges J2 play impor-
tant roles in determining the magnetic properties. This can be
attributed to the electronic structure of Mn3+ ion with t2g

3 eg
1

electron configuration. For the nearest-neighbor Mn-Mn
pairs, there are two opposite contributions to the superex-
change Jab as shown in Fig. 4�a�. The exchange between the
S=1 /2 spins on the staggered eg orbitals gives a ferromag-
netic contribution, while in the t2g-orbital sector, the antifer-
romagnetic coupling is realized between the S=3 /2 spins.
The cancellation of these opposite contributions results in the
small magnitude of Jab. On the other hand, for the Mn-Mn
pairs neighboring along the b axis, both the eg-orbital and the
t2g-orbital sectors give antiferromagnetic contributions to the
superexchange J2 as in Fig. 4�b�, resulting in the relatively
large magnitude of J2. The frustration between the ferromag-

netic Jab and the antiferromagnetic J2 stabilizes a spiral
spin order in RMnO3 compounds with relatively strong
GdFeO3-type distortion such as TbMnO3, DyMnO3, and cer-
tain kinds of solid solutions.

We calculate the values of superexchange parameters Jab
and Jc for several RMnO3 compounds by using formulas
given in Refs. 82 and 83. The results are listed in Table I.
The structural data used in this calculation are taken from
Refs. 84–88. The changes of their values are very small upon
the R-site variation as far as vicinities of the multiferroic
phases are concerned. We take Jab=0.80 meV and Jc
=1.25 meV in the following calculations. We also estimate
the values of J2 in TbMnO3, DyMnO3, YMnO3, and several
solid solutions by employing the two-dimensional J1-J2 clas-
sical Heisenberg model, which reveals that the value of J2
monotonically increases with decreasing R-site radius. For
the details, see Appendixes A and B.

C. Single-ion anisotropy

The second term Hsia denotes the single-ion anisotropies,
which is determined by the wave function of occupied eg

-Jab (FM)-Jab (FM)

J2 (AFM)

a

b xy

(a)

(b)

ζi
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η
i
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J2 (AFM)
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O

FIG. 3. �Color online� �a� Superexchange interactions in RMnO3

and tilted local coordinate axes 	i, 
i, and �i attached to the ith
MnO6 octahedron. With regard to the superexchange interactions,
we consider ferromagnetic exchanges Jab on the Mn-Mn bonds
along the cubic x and y axes, antiferromagnetic exchanges J2 on the
in-plane diagonal Mn-Mn bonds along the orthorhombic b axis, and
antiferromagnetic exchanges Jc on the Mn-Mn bonds along the c
axis. �b� Configuration of the occupied eg orbitals and superex-
change interactions �Jab and Jc, solid curves� in the ab plane. Ex-
change path for the superexchange J2 via two oxygen 2p orbitals is
indicated by a dashed line.

Jab = J
eg
FM - J

t2g
AF

J t2gAF

J egFM

t2g t2g

3y2-r2

t2g t2g

J2 = J
eg
AF + J

t2g
AF

(a) (b)

3y2-r23y2-r2

3x2-r2

J t2gAF

J egAF

FIG. 4. �Color online� �a� Opposite contributions to the nearest-
neighbor ferromagnetic exchange Jab from the t2g- and eg-orbital
sectors. �b� Cooperative contributions to the second-neighbor anti-
ferromagnetic exchange J2 from the t2g- and eg-orbital sectors.

TABLE I. Calculated superexchange parameters �Jab and Jc� and
single-ion anisotropy parameters �D and E� for several RMnO3

compounds. Structural data used in the calculations are taken from
Refs. 84–88. In the second row, their ground-state magnetic struc-
tures are presented. Calculated values of D and E contain some
ambiguities due to uncertainty in the optical absorption data �Refs.
89 and 90�. The values in the upper �lower� rows are calculated
using the data from Ref. 89 �Ref. 90�. Values of the second-
neighbor antiferromagnetic exchange J2 are also presented in the
last row, which are calculated using the J1-J2 model �see Appendix
B�. The value of J2 in EuMnO3 �AFM�A�� is deduced by
extrapolation.

RMnO3 EuMnO3 TbMnO3 DyMnO3 YMnO3

Magnetic state AFM�A� bc-cycloidal bc-cycloidal cycloidal?

Jab �meV� 0.85 0.79 0.76 0.77

Jc �meV� 1.27 1.26 1.20 1.25

D �meV� 0.32 0.33 0.33 0.34

0.24 0.25 0.25 0.25

E �meV� 0.34 0.34 0.34 0.34

0.25 0.24 0.24 0.24

J2 �meV� �0.5 0.62 1.12 1.9
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orbital, or equivalently by the local environment of Mn3+ ion
surrounded by six oxygens. Here 	i, 
i, and �i are tilted local
axes attached to the ith MnO6 octahedron as shown in Fig.
3�a�. This term consists of two parts, i.e., Hsia

D and Hsia
E . The

former part Hsia
D implies that the �i axis is a local hard mag-

netization axis at every site, and consequently the crystal c
axis becomes a hard magnetization axis since the �i axis at
each site directs nearly along the c. On the other hand, the
latter part Hsia

E implies that the 	i and 
i axes become a local
hard magnetization axis alternately in the ab plane. This is
due to the staggered ordering of occupied eg orbitals, i.e., the
3x2−r2 /3y2−y2-type orbital ordering.

We derive directional vectors of the 	i, 
i, and �i axes
with respect to the a, b, and c axes using coordination pa-
rameters of oxygens as

�i = �a�0.25 + �− 1�ix+iy�0.75 − xO2
��

b�0.25 − �− 1�ix+iy�yO2
− 0.25��

c�− 1�ix+iy+izzO2

� , �7�

�i = �a�− 0.25 + �− 1�ix+iy�0.75 − xO2
��

b�0.25 + �− 1�ix+iy�yO2
− 0.25��

− c�− 1�ix+iy+izzO2

� , �8�

�i = � − a�− 1�ix+iy+izxO1

b�− 1�iz�0.5 − yO1
�

0.25c
� . �9�

Here xO2, yO2, and zO2 are the coordination parameters of
the in-plane oxygens, xO1, yO1, and zO1 are those of the
out-of-plane oxygens, and a, b, and c are the lattice param-
eters. For values of these parameters, we use the experimen-
tal data of EuMnO3 �Ref. 87� �see Table II� throughout the
calculations for simplicity. We have confirmed that the re-
sults are not significantly changed even if we use the values
for other RMnO3 compounds especially with R=Gd, Tb, Dy,
Y, and Ho. We note that the axis vectors �i, �i, and �i in Eqs.
�7�–�9� are not normalized.

Using these vectors, we can rewrite Hsia
D and Hsia

E as

Hsia
D = D�

i

�Si · �i/�i�2, �10�

Hsia
E = E�

i

�− 1�ix+iy��Si · �i/�i�2 − �Si · �i/�i�2� . �11�

In Table I, the values of D and E are listed, which are cal-
culated using formulas given in Ref. 89. Noticeably, the val-
ues are all approximately equal in the compounds located
near/in the multiferroic phases in the phase diagram although
the calculated values contain some ambiguities due to uncer-

tainty in the optical absorption data.89,90 We take D=0.25
meV and E=0.30 meV in the following calculations. For de-
tails of the parameter calculations here, see Appendix C.

D. Dzyaloshinsky-Moriya interaction

The third term HDM denotes the DM interactions.91–93 The
DM vector dij

� is defined on the Mn�i�-O-Mn�j� bond along
the � axis ��=x, y, and z�, and the following antisymmetric
relation holds: d ji

� =−dij
�. Given that the Mn�j� ion is adjacent

to the Mn�i� ion in the positive � direction, the DM vectors
are given by �see also Fig. 5�

dij
x = � �− 1�ix+iy+iz�ab

− �− 1�ix+iy+iz�ab

�− 1�ix+iyab
� , �12�

dij
y = �− �− 1�ix+iy+iz�ab

− �− 1�ix+iy+iz�ab

�− 1�ix+iyab
� , �13�

dij
z = � − �− 1�iz�c

− �− 1�ix+iy+iz�c

0
� �14�

because of the crystal symmetry.

TABLE II. Structural parameters of EuMnO3 from Ref. 87.

a �Å� b �Å� c �Å� xO1
yO1

xO2
yO2

zO2

5.3437 5.8361 7.46186 0.0974 0.4714 0.7055 0.3247 0.04845

i

j

k

1

2

3

4

5

6

7

8

9

di1 = (-αab, βab, γab)

di4 = (αab, βab, γab)

di3 = (αab, βab, γab)

dj7 = (-αab, -βab, γab)

dj8 = (-αab, -βab, γab) dij = (αc, βc, 0)

djk = (-αc, -βc, 0)

d59 = (-αc, βc, 0)

d15 = (αc, -βc, 0)

dj6 = (αab, -βab, γab)

dj5 = (αab, -βab, γab)

di2 = (-αab, βab, γab)

x

y

z

a

b

c

Mn

O

FIG. 5. �Color online� Dzyaloshinsky-Moriya vectors associated
with different Mn-O-Mn bonds, which are expressed by five param-
eters, �ab, �ab, ab, �c, and �c. The vectors on the in-plane Mn-
O-Mn bonds direct nearly perpendicular to the plane consisting of
the corresponding Mn, O, and Mn ions.
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The five DM parameters, �ab, �ab, ab, �c, and �c, in
LaMnO3 were evaluated in the first-principles calculation,94

which shows that the DM vector on the in-plane Mn-O-Mn
bond is nearly perpendicular to the plane consisting of the
corresponding Mn, O, and Mn ions, while the DM vector on
the out-of-plane bond is not. This can be understood as fol-
lows. The spin exchange on the in-plane Mn-Mn bond is
governed by the exchange path via the in between one oxy-
gen, i.e., the Mn-O-Mn path. Thus the direction of the DM
vector on the in-plane bond is dominantly determined by
local symmetry of the Mn-O-Mn bond. On the other hand,
the spin exchange on the out-of-plane Mn-Mn bond is not
necessarily governed by the Mn-O-Mn path along the c axis,
and contributions from indirect paths containing more than
one oxygens are not negligible since the occupied eg orbitals
are directed not along the c axis but in the ab plane. As a
result, the DM vector on the out-of-plane bond does not re-
flect the local symmetry of the Mn-O-Mn bond.

In addition, according to the electron-spin resonance
�ESR� measurements for LaMnO3,95–97 the DM vector on the
out-of-plane bond is approximately four times larger in mag-
nitude than the vector on the in-plane bond. We expect that
the above findings also hold in other RMnO3 compounds
although neither theoretical nor experimental studies on the
DM vectors presently exists except for R=La. In our calcu-
lation, we take �ab=0.10 meV, �ab=0.10 meV, ab
=0.14 meV, �c=0.30 meV, and �c=0.30 meV. With this set
of parameters, the above two features are reproduced: the
DM vector on the in-plane bond is nearly perpendicular to
the corresponding Mn-O-Mn plane, and the vector on the
out-of-plane bond is approximately three times larger than
the vector on the in-plane bond.

We also mention that the a components of DM vectors on
the out-of-plane bonds have the same signs within each
plane, but the signs alternate along the c axis. This situation
gives rise to a weak ferromagnetism �WFM� with moments
along the c axis due to the spin canting in the AFM�A� phase
in agreement with the experimental observation.18,98

E. Cubic anisotropy

The last term Hcub represents the cubic anisotropy, which
comes from nearly cubic symmetry of the perovskite lattice.
Here, Sx, Sy, and Sz are written as Sx=1 /�2�Sb−Sa�, Sy
=1 /�2�Sb+Sa�, and Sz=Sc, respectively. The coupling con-
stant a in the Mn3+ ion surrounded by the octahedrally coor-
dinated oxygens was evaluated to be 0.0162 meV in the ESR
measurement.90 We neglect a slight contribution from the
orthorhombic lattice distortion to the spin anisotropy since it
is expected to be very small.

F. Method

We calculate thermodynamic properties of the model �2�
by using the Monte Carlo method. The model parameters
used in the calculations are summarized in Table III. To
avoid a critical slowing down in the frustrated systems, we
employ the replica exchange Monte Carlo method.99 We take
an exchange sampling after every 400 standard Monte Carlo
steps. Typically, we perform 600 exchanges after sufficient

thermalization Monte Carlo steps. In the following, we
mainly show the results obtained for systems with 48�48�6
sites under the periodic boundary condition. By performing
the calculations also for systems with 36�36�6 sites at
some parameter values, and by adopting the open boundary
condition also, we confirm that the finite-size effect is small
enough and never affects our conclusion.

On the other hand, we study ground-state properties by
numerically solving the Landau-Lifshitz-Gilbert equation.
We derive effective local magnetic fields Hi

eff acting on the
ith Mn spin Si from the Hamiltonian H as

Hi
eff = − �H/�Si. �15�

Then, we construct a Landau-Lifshitz-Gilbert equation with
thus obtained local fields,

�Si

�t
= − Si � Hi

eff +
�G

S
Si �

�Si

�t
, �16�

where �G is the dimensionless Gilbert-damping coefficient
introduced phenomenologically. For the value of �G, we take
a rather small value of �G=0.01 to achieve a slow relaxation
towards a stable spin structure with a minimum energy. We
solve this equation using the Runge-Kutta method. For the
convergence, we use thermally relaxed spin configurations
obtained in the Monte Carlo simulations at the lowest tem-
perature �kBT�0.5 meV� as initial states.

III. RESULTS

A. Overview

When we study the experimental phase diagrams intro-
duced in Sec. I, we assume that main roles of the
GdFeO3-type distortion on the magnetic and electric proper-
ties in RMnO3 are induction and enhancement of the second-
neighbor antiferromagnetic exchanges J2. Under this as-
sumption, we investigate the T-rR diagrams for RMnO3 �rR is
the ionic R-site radius� and the T-x diagrams for solid solu-
tions by varying the value of J2. In Sec. III B, we first display
a theoretically obtained T-J2 phase diagram, which shows
good agreement with the experimentally obtained T-x phase
diagram of Eu1−xYxMnO3 in Ref. 18. Then we show calcu-
lated results for the momentum dependence of spin and spin-
helicity correlation functions, and the temperature depen-
dence of specific heat and spin-helicity vector. We discuss
how we identify phase transitions and magnetic structures in
the phase diagram with the aid of these results. In Sec. III C,

TABLE III. Model parameters used in the calculations for each
term of the Hamiltonian. The energy unit is meV.

Hex Jab=0.80, Jc=1.25

Hsia D=0.25, E=0.30

HDM �ab=0.10, �ab=0.10, ab=0.14

�c=0.30, �c=0.30, c=0.0

Hcub a=0.0162
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we discuss a mechanism of the orthorhombic-distortion-
induced spin-cycloidal-plane �electric-polarization� flop. We
also demonstrate that the regime of bc-cycloidal spin �P �c�
phase increases as the DM parameter �c increases, and the
experimental phase diagram of the Gd1−xTbxMnO3 system in
Ref. 15 is reproduced well for a rather large value of �c
=0.38 meV. In Sec. III D, we study the ground-state spin
structures in the ab- and bc-cycloidal spin phases and discuss
the experimentally claimed elliptical modulation of the cy-
cloidal spin structure. In Sec. III E, by examining effects of
the single-ion anisotropies, we address the issue why the Mn
spins are aligned along the b axis in the AFM�A� and sinu-
soidal collinear phases. In Sec. III F, we discuss the sinu-
soidal collinear spin phase in the intermediate temperature
region by examining the role of the single-ion anisotropies
on its emergence.

B. Phase diagram

In Fig. 6, we display a theoretically obtained T-J2 phase
diagram, which reproduces the experimental T-x phase dia-
gram of Eu1−xYxMnO3 system �Fig. 2�b��. This theoretical
diagram shows that at the lowest temperature, the canted
AFM�A� state emerges for J2�0.59, while for J2�0.59, the
cycloidal spin states emerge. For 0.59�J2�0.64, the system
undergoes two thermal phase transitions, and the paramag-
netic, sinusoidal collinear, and ab-cycloidal phases succes-
sively emerge with lowering temperature. On the other hand,
for J2�0.64, the system undergoes three thermal phase tran-
sitions, and four magnetic phases, i.e., the paramagnetic,
sinusoidal collinear, and ab-cycloidal and bc-cycloidal
phases, successively emerge as temperature decreases. The
third transition is nothing but a spin-cycloidal-plane flop
from the bc plane to the ab plane. The regime of
bc-cycloidal phase increases with increasing J2. According to
the spin-current model, the ferroelectricity with Pa is ex-
pected to show up in the ab-cycloidal spin phase and that
with Pc in the bc-cycloidal spin phase. Note that in the gray
region in Fig. 6, we obtain several complicated magnetic
structures, whose spin correlation functions show peaks at
several k points. They are considered to be artifacts of the
finite-size calculation for 48�48�6 sites. In the vicinity of
the AFM�A� phase, pitches of the spiral and sinusoidal spin
states become so long and the magnetic unit cells become so
large that the calculation tends to be seriously affected by the
finite-size effects.

We identify each of the phases and each of the transitions
in the above phase diagram by calculating several physical
quantities. The magnetic structures are assigned from calcu-
lated momentum dependence of the spin correlation function

Ŝ��k ,T� and that of the spin-helicity correlation function

Ĥ�
b�k ,T�. On the other hand, the transition points are deter-

mined from calculated temperature dependence of the spe-
cific heat Cs�T� and that of the spin-helicity vector hs

b�T�.
The spin and spin-helicity correlation functions Ŝ��k ,T�

and Ĥ�
b�k ,T� for �=a, b, and c are calculated by

Ŝ��k,T� =
1

N2�
i,j

	S�iS�j
eik·�ri−rj�, �17�

Ĥ�
b�k,T� =

1

N2�
i,j

	h�i
b h�j

b 
eik·�ri−rj�, �18�

where the angular brackets denote the thermal average. Here,
h�i

b is the � component of local spin-helicity vector hi
b

= �hai
b ,hbi

b ,hci
b �, which is defined as

hi
b = �Si � Si+b�/S2. �19�

In the following, we write these correlation functions simply

as Ŝ��k� and Ĥ�
b�k� by omitting T.

In a cycloidal spin state, all of the local spin-helicity vec-
tors point in the same direction perpendicular to the basal
cycloidal plane. In this sense, the cycloidal spin state can be
regarded as a ferrohelicity state. Furthermore, the
ab-cycloidal spin state has a ferrohelicity component along
the c axis, while the bc-cycloidal spin state has that along the

a axis. Thus the spin-helicity c-component correlation Ĥc
b�k�

has a peak at k= �0,0 ,0� in the ab-cycloidal spin phase,
while in the bc-cycloidal spin phase, its a-component corre-

lation Ĥa
b�k� also has a peak at k= �0,0 ,0�. In the following,

we overview features of Ŝ��k� and Ĥ�
b�k� in each magnetic

phase by taking typical points in the phase diagram as ex-
amples, which are indicated by cross symbols in the inset of
Fig. 7�a�.

In Fig. 7�a� we display the calculated Ŝ��kx ,ky ,�� �upper

left panel� and Ĥ�
b�kx ,ky ,0� �right panel� in the AFM�A�

+WFM phase. In this phase, the Mn spins are aligned nearly
parallel to the b axis and couple ferromagnetically in the ab
plane with antiferromagnetic stacking along the c axis. As a

result, the spin b-component correlation Ŝb�k� has a sharp

peak at k= �0,0 ,��, while Ŝa�k� and Ŝc�k� do not. On the

other hand, the spin-helicity correlation Ĥ��k� has no struc-
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FIG. 6. �Color online� Theoretically obtained magnetoelectric
phase diagram in plane of temperature and J2. Here, AFM�A�
+WFM denotes the A-type antiferromagnetic phase with weak fer-
romagnetism due to the spin canting, and PE and FE denote
paraelectric and ferroelectric phases expected in the spin-current
model �Refs. 9, 11, and 12�, respectively.
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ture for any �. In addition, weak ferromagnetic moments
arise due to the spin canting. As shown in the lower panel of
Fig. 7�a�, the spin c-component correlation Ŝc�k� exhibits a

tiny but sharp peak at k=0. Moreover, this spin canting in
fact generates finite local spin helicities hi

c between spin
pairs neighboring along the c axis, defined as
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FIG. 7. �Color online� Calculated spin correlation functions Ŝ��k� for kc=� �left panels� and spin-helicity correlation functions Ĥ�
b�k� for

kc=0 �right panels� in the kx-ky plane ��=a, b, and c� for different magnetic states—at the points indicated by cross symbols in the inset; �a�
the canted AFM�A� state �AFM�A�+WFM state� at J2=0.44 meV and kBT=0.5 meV, �b� the sinusoidal collinear spin state at J2

=0.80 meV and kBT=3.5 meV, �c� the bc-cycloidal spin state at J2=0.80 meV and kBT=2.5 meV, and �d� the ab-cycloidal spin state at
J2=0.80 meV and kBT=0.5 meV. For the AFM�A�+WFM state, spin correlation function Ŝ��k� for kc=0 is also displayed, which indicates
small ferromagnetic moments along the c axis.
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hi
c = �Si � Si+c�/S2. �20�

These vectors direct in the positive a direction or in the
negative a direction uniformly in the plane, and these two
kinds of planes are stacked alternately. Thus if we introduce
the correlation function of hi

c as

Ĥ�
c �k,T� =

1

N2�
i,j

	h�i
c h�j

c 
eik·�ri−rj�, �21�

the a-component correlation Ĥa
c�k ,T� has a peak at k

= �0,0 ,��—not shown.

In Fig. 7�b�, we display the calculated Ŝ��kx ,ky ,�� and

Ĥ�
b�kx ,ky ,0� in the ab-cycloidal phase. In this phase, the Mn

spins rotate in the ab plane, while they couple antiferromag-
netically along the c axis. As a result, the spin correlations

Ŝa�k� and Ŝb�k� exhibit sharp peaks at �ka ,kb ,kc�
= �0, �qm ,�� with a finite qm. The rotating spins in the ab
plane give rise to a ferroarrangement of the spin helicities hi

b

along the c axis. This results in a peak of spin-helicity cor-

relation Ĥc
b�k� at k=0.

The correlation functions in the bc-cycloidal phase in Fig.

7�c� exhibit that the spin correlations Ŝb�k� and Ŝc�k� show
sharp peaks at �ka ,kb ,kc�= �0, �qm ,��, and the spin-helicity

correlation Ĥa
b�k� has a sharp peak at k=0. This is because

the Mn spins rotating in the bc plane give rise to a ferroar-
rangement of the spin helicities hi

b along the a axis.
Finally, the results for sinusoidal collinear phase are

shown in Fig. 7�d�. In this phase, the collinearly aligned Mn
spins � �b� are sinusoidally modulated with a finite modula-
tion vector along the b axis. This results in sharp peaks of the
spin b-component correlation Ŝb�k� at �ka ,kb ,kc�= �0,
�qm ,�� with a finite qm, as well as no remarkable structure

in the spin-helicity correlations Ĥ�
b�k� for any �.

In Fig. 8, we show the temperature dependence of specific
heat Cs�T� and spin-helicity vector hs

b�T� for various values
of J2, which are calculated by

Cs�T� =
1

N
�	H
/��kBT� , �22�

hs
b�T� =

1

N���i

Si � Si+b��� S2. �23�

Here, h�T� �=a, b, and c� denotes the  component of
spin-helicity vector hs

b�T�= �ha�T� ,hb�T� ,hc�T��. In the
ab-cycloidal �bc-cycloidal� phase, its c �a� component hc�T�
�ha�T�� has a large value, while other two components are
strongly suppressed. On the other hand, in the paramagnetic,
canted AFM�A� and sinusoidal collinear phases, all of these
three components should be nearly equal to zero.

In Fig. 8�a�, we can see a single phase transition in Cs�T�
for a small value of J2=0.36 meV, which corresponds to a
transition from paramagnetic into canted AFM�A� phases.
The spin-helicity vector hs

b�T� is nearly equal to zero con-
stantly through this transition.

For a larger value of J2=0.62 meV, Cs�T� shows two
peaks as shown in Fig. 8�b�, indicating that successive two

transitions occur with lowering temperature. The spin-
helicity vector hs

b�T� is almost unchanged and is approxi-
mately zero through the first transition, at which the system
enters into the sinusoidal collinear phase from paramagnetic
phase. Contrastingly, at the subsequent transition, its c com-
ponent hc�T� starts increasing, indicating a transition into the
ab-cycloidal phase.

For a further increased value of J2=0.80 meV, the system
exhibits successive three phase transitions as temperature de-
creases �see Fig. 8�c��. The first one is a transition from
paramagnetic to sinusoidal collinear phases through which
all of the three components of hs

b�T� are again approximately
zero constantly. At the second transition, its a component,
ha�T�, increases, while other two components are remain to
be small, indicating a transition into the bc-cycloidal phase.
With further lowering temperature, the a component ha�T�
suddenly drops, while the c component hc�T� steeply in-
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FIG. 8. �Color online� Calculated temperature profiles of spe-
cific heat Cs�T� and spin-helicity vector hs

b�T� for various values of
J2 �along the vertical dashed lines in inset�: �a� J2=0.36 meV, �b�
J2=0.62 meV, and �c� J2=0.80 meV. Here, h�T� �=a, b, and c�
denotes the  component of hs

b�T�. In the ab-cycloidal
�bc-cycloidal� phase, the value of hc�T� �ha�T�� is much larger than
the other two components.
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creases at the third transition point, indicating a spin-
cycloidal-plane flop from the bc plane to the ab plane.

C. Orthorhombic-distortion-induced polarization flop

In RMnO3, the c axis is always a hard axis for magneti-
zation due to the single-ion anisotropies Hsia

D . Therefore, the
bc-cycloidal spin state seems to be higher in energy than the
ab-cycloidal spin state at first sight. In this sense, the emer-
gence of bc-cycloidal spin order is puzzling. Moreover, the
bc-cycloidal spin phase emerges next to the ab-cycloidal
spin phase with increasing GdFeO3-type distortion. The
mechanism of this lattice-distortion-induced cycloidal-plane
flop has not been clarified yet.

If the Hamiltonian contains the superexchange term only,
spins in the cycloidal state rotate uniformly. In the ground
state, the angle � between adjacent two spins along the x or
y axis satisfies the relation, cos �=Jab / �2J2�. On the other
hand, if we introduce the DM interactions, the rotation
angles should be modulated, and are no longer the same.

In the ab-cycloidal spin state, the rotating spins couple
dominantly to the c components of DM vectors on the in-
plane Mn-O-Mn bonds. Their magnitudes are all equal to
ab, and their signs �i.e., +ab and −ab� alternate along the x
and y bonds—see the left panel of Fig. 9�a�. Without DM
interaction, the spins rotate with the same rotation angles of
�ab. On the other hand, in the presence of DM interactions,
the rotation angles become alternately modulated into �ab
+��ab and �ab−��ab with ��ab�0 to get an energy gain
from the DM interactions—see the right panel of Fig. 9�a�.
We can derive the energy gain due to this angle modulation
as

�EDM
ab /N = − abS2sin��ab − ��ab� − sin �ab

= − abS2cos �ab��ab. �24�

This expression implies that the energy gain �EDM
ab  is re-

duced with increasing �ab because the prefactor cos �ab
becomes maximum ��1� for �ab=0 but decreases as �ab
increases. Thus the ab-cycloidal spin state is destabilized
with increasing J2 or with increasing GdFeO3-type distor-
tion.

On the other hand, the spins in the bc-cycloidal state
dominantly couple to the a components of DM vectors on
the out-of-plane Mn-O-Mn bonds. Their magnitudes are all
equal to �c, and their signs are the same within a plane but
alternate along the c axis—see the left panel of Fig. 9�b�.
Without DM interaction, the angles between adjacent two
spins along the c axis are uniformly �c=� because of the
strong antiferromagnetic coupling Jc. In the presence of DM
interactions, the angles again suffer from staggered modula-
tion into �+��c and �−��c with ��c�0—see the right
panel of Fig. 9�b�. Similar to the ab-cycloidal case, we can
derive the energy gain due to the angle modulation as

�EDM
bc /N = − �cS

2cos �c��c = − �cS
2��c. �25�

Since the value of cos �c becomes maximum ��1� at �c
=�, the energy gain �EDM

bc for the bc-cycloidal spin state is
always maximum irrespective of the value of J2.

As a result, the energetical advantage of bc-cycloidal spin
state relative to the ab-cycloidal one due to the DM interac-
tions, �EDM

bc −�EDM
ab , increases as J2 increases. The

bc-cycloidal spin state is expected to be stabilized when the
above energy difference dominates over the energetical dis-
advantage due to the hard magnetization c axis.

According to the above discussion, we expect that the a
component of DM vector on the out-of-plane Mn-O-Mn
bond is relevant to the stability of the bc-cycloidal spin state.
To confirm this, we investigate T-J2 phase diagrams for vari-
ous values of �c. Figures 10�a�–10�c�, together with Fig. 6,
show that the regime of bc-cycloidal phase increases as �c
increases. Note that the phase diagram for �c=0.30 meV de-
picted in Fig. 6 should be placed between Figs. 10�a� and
10�b�, which are for �c=0.24 meV and �c=0.34 meV, re-
spectively.

The experimental phase diagram of Gd1−xTbxMnO3 de-
picted in Fig. 2�b� is reproduced when �c=0.38 meV as in
Fig. 10�c�. This value is slightly larger than �c=0.30 meV,
for which the phase diagram of Eu1−xYxMnO3 is reproduced.
This difference may be due to different R-site-radius depen-
dence of the GdFeO3-type distortion. According to Ref. 17,
the lattice parameters of TbMnO3 are equivalent to those of
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FIG. 9. �Color online� �a� ��b�� Left panel: spin structure in the
ab-cycloidal �bc-cycloidal� state and arrangement of the c �a� com-
ponents of DM vectors on the in-plane �out-of-plane� Mn-O-Mn
bonds. The symbols � and � express their signs, i.e., � for the
positive sign and � for the negative sign. Right panel: �upper panel�
spin directions in the ab-cycloidal �bc-cycloidal� state with uniform
rotation angles in the absence of DM interactions, and �lower panel�
spin directions with modulated rotation angles in the presence of
DM interactions.
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Eu1−xYxMnO3 with x�0.85 although TbMnO3 is expected
to be located at x�0.4 in the T-x diagram in terms of the
averaged R-site radius. This indicates that the lattice of
TbMnO3 is more significantly distorted than expected from
comparison to the Eu1−xYxMnO3 system—we may have to
consider not only the average of R-site radii but also their
variance.100 The out-of-plane Mn-O-Mn bond angles in
Gd1−xTbxMnO3 tend to more significantly deviate from 180°
than those in Eu1−xYxMnO3 system, resulting in larger DM
vectors on the out-of-plane bonds or a larger value of �c.
�Note that the DM vector becomes zero when the bond angle
is 180° because of symmetry.�

We should also note that there is a slight difference be-
tween the experimental diagram of Gd1−xTbxMnO3 and the-

oretical diagram for �c=0.38 meV �compare Figs. 2�b� and
10�c��. In the experimental one, the phase boundary between
the ab- and bc-cycloidal spin phases slightly bends, and in
the very narrow region near the phase boundary, the system
exhibits a reentrant behavior with successive transitions from
bc-to ab- and again to bc-cycloidal spin phases with lower-
ing temperature. In addition, the ab-cycloidal spin order is
absent in the ground state. These points are not reproduced in
our calculation. This discrepancy may be solved by consid-
ering effects of the f-electron moments on the rare-earth
ions, which order approximately below 10 K. Here we em-
phasize that overall features of the phase diagram of
Gd1−xTbxMnO3 can be reproduced within the Mn 3d-spin
sublattice model. However, to reproduce its subtle features,
we may need to consider couplings between the Mn 3d spins
and the rare-earth f-electron moments.8,101–104 By contrast, in
the case of Eu1−xYxMnO3 without interference from
f-electron moments, the agreement between the experiment
and the calculation is quite good.

To summarize this section, the ab- and bc-cycloidal spin
states in RMnO3 are stabilized by the single-ion anisotropy
or the DM interaction. Namely, the hard magnetization c axis
due to the single-ion anisotropy gives a relative stability to
the ab-cycloidal state, while the bc-cycloidal state is stabi-
lized by the DM vectors on the out-of-plane bonds. On the
other hand, the ac-plane spin cycloid is unfavorable. Recent
first-principles calculations for TbMnO3 also confirmed this
tendency.13,14

D. Magnetic structures in the cycloidal spin states

The calculated spin correlation functions Ŝa�k� and Ŝb�k�
in the ab-cycloidal spin phase are not equal in magnitude of

the peak �see Fig. 8�d��. This is also the case for Ŝb�k� and

Ŝc�k� in the bc-cycloidal spin phase �see Fig. 8�c��. At first
sight, this seems to mean that the magnitude of ordered mag-
netic moment depends on its direction. The inequivalency

between Ŝb�q� and Ŝc�q� was actually observed in the recent
spin-polarized neutron scattering experiments for TbMnO3
and Tb1−xDyxMnO3 and was ascribed to an elliptical modu-
lation of the spin cycloid.10,80 Figure 11 shows the measured

temperature dependence of �Ŝc�q� / Ŝb�q� for the bc-plane
spin cycloid in TbMnO3, where q is the spiral propagation
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FIG. 11. Temperature dependence of �Ŝc�q� / Ŝb�q� in TbMnO3

measured in the spin-polarized neutron-scattering experiment from
Ref. 10. Here q is the propagation wave vector of the bc-cycloidal
spin state.
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wave vector.10 Importantly, the data for finite temperatures
are extrapolated not to unity but to � 0.8 at T=0. This may
imply that the spin cycloid is elliptically modulated even in
the ground state possibly due to quantum fluctuations. How-
ever, our calculation reveals that the peaks of two spin cor-
relation functions at T=0 are not equal even within our clas-
sical model �see insets of Figs. 12�a� and 12�b��, in which the
quantum fluctuations are not taken into account, indicating
that the consideration of quantum fluctuations is not neces-
sarily required to explain this experimental observation. In
the following, we address this issue by investigating the de-
tailed spin structures in the cycloidal spin states.

We first show the calculated temperature dependence of
�Ŝa�q� / Ŝb�q� for the ab-cycloidal case in Fig. 12�a�, and that

of �Ŝc�q� / Ŝb�q� for the bc-cycloidal case in Fig. 12�b�. They
are calculated for J2=0.80 meV and �c=0.24 meV, and for
J2=0.80 meV and �c=0.38 meV, respectively. Since the
commensurate spin cycloid is convenient for discussion, we

choose J2=0.80 meV �i.e., Jab /J2=1�, for which the spiral
propagation wave number becomes qm=1 /3. This value cor-
responds to an intermediate value of qm�0.28 in TbMnO3
and qm�0.36 in DyMnO3. The data for finite temperatures
are obtained by the Monte Carlo simulations, while those for
the ground states are obtained by numerically solving the
Landau-Lifshitz-Gilbert equation. They are smoothly con-
nected and reproduce the experimentally observed tempera-
ture dependence and the nonunity values at T=0 for both ab-
and bc-cycloidal cases.

To clarify the origin of non-unity values of �Ŝa�q� / Ŝb�q�
and �Ŝc�q� / Ŝb�q� at T=0, we investigate detailed spin struc-
tures in the ground state for both ab- and bc-cycloidal cases.
The results are shown in Figs. 12�c� and 12�d�. Noticeably,
the rotation angles of cycloidal spins are not uniform but
suffer from considerable modulation. This rotation-angle
modulation is due mainly to the single-ion spin anisotropies.
The spins avoid to point along the hard magnetization axes
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FIG. 12. �Color online� �a� Temperature dependence of Ŝa�q�, Ŝb�q�, and �Ŝa�q� / Ŝb�q� for the ab-cycloidal spin state with J2

=0.80 meV and �c=0.24 meV. �b� Temperature dependence of Ŝb�q�, Ŝc�q�, and �Ŝc�q� / Ŝb�q� for the bc-cycloidal spin state with J2

=0.80 meV and �c=0.38 meV. The data for finite temperatures obtained by the Monte Carlo simulations are smoothly extrapolated to the
data at T=0 obtained by numerically solving the Landau-Lifshitz-Gilbert equation as indicated by dashed lines. Insets of �a� and �b� show
the spin-correlation functions in the kx-ky plane for kc=� at T=0. �c� Spin alignment �left panel� and spin directions �right panel� at T=0 for
the ab-cycloidal spin state. Here the orthorhombic unit cell contains alternately stacked two different MnO planes with zi=0 and 0.5. �d�
Those for the bc-cycloidal spin state.
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but prefer to direct along the easy magnetization axes. This is
the very origin of the above inequivalent peak values of two
kinds of spin correlation functions. We expect that higher
harmonic peaks of the spin correlation functions should ap-
pear somewhere in the momentum space. In the ab-cycloidal
case, we can see additional tiny peaks in the inset of Fig.
12�a�.

E. Effects of single-ion anisotropies in the collinear spin states

In the �nearly� collinear magnetic phases in RMnO3 like
AFM�A� and sinusoidal phases, the Mn spins are aligned
parallel to the b axis. The issue which interaction or which
magnetic anisotropy is responsible for this easy-axis spin
anisotropy has not been clarified yet. In Hamiltonian �2�,
there are some suspects, e.g., the single-ion anisotropy terms
�Hsia

D and Hsia
E �, the DM-interaction term �HDM�, and the

cubic-anisotropy term �Hcub�. Among them, the DM-
interaction term turns out to be irrelevant. We confirm that
the spins in these phases are still parallel to the b axis even
without DM interaction.

In the literature, Matsumoto discussed a combination ef-
fect of cubic anisotropy Hcub and one of the single-ion
anisotropies Hsia

D in the tilted MnO6 octahedra.89 Using
the polar representation �Sai ,Sbi ,Sci�= �S sin �i cos �i ,
S sin �i sin �i ,S cos �i� �see Fig. 13�a��, and considering that
the hard magnetization along the c axis favors spins lying on
the ab plane �i.e., �i=� /2�, the term Hcub can be rewritten as

Hcub � �
i

�Sxi
4 + Syi

4 + Szi
4 � = S4�

i

�3 − cos 4�i�/4. �26�

This expression implies that the cubic anisotropy favors
spins pointing along the a or b axis since this term has en-
ergy minima at �i=0, � /2, �, and 3� /2. Furthermore, tilting
of the MnO6 octahedra makes the local �i axes, which are
local hard magnetization axes at every Mn site, inclined to-
ward the a axis, resulting in a relatively hard magnetization
along the a axis. Seemingly, this leads to a relatively easy
magnetization along the b axis. The energy of Hcub+Hsia

D in
the polar representation with �i=� /2 indeed gives energy
minima when the spin points in the �b direction �i.e., �i
=� /2 and 3� /2�.

However, this scenario turns out to be wrong since the
energies of Hcub and Hsia

D �Ecub and Esia
D � are negligibly small

as compared to the energy of Hsia
E �Esia

E � when the spins stick
to the ab plane. Instead, the magnetic anisotropy is governed
by the term Hsia

E . Because of the term Hsia
E , the 	i and 
i axes

become a hard magnetization axis alternately in the ab plane.
In Figs. 13�c� and 13�d�, the �i dependence of Esia

E is shown
together with those of Ecub and Esia

D for Mn A and Mn B sites,
respectively. Here Mn A and Mn B are two different Mn sites
in the same Mn-O plane �see Fig. 1�a��. Noticeably, the en-
ergies Ecub and Esia

D are much smaller than the energy Esia
E .

However, the energy Esia
E ��i� has energy minima not along

the b axis ��i=� /2� but nearly along the x and y axes ��i
=� /4 and 3� /4�, respectively. This may seem incompatible
with the easy magnetization along the b axis. However, since
the in-plane ferromagnetic exchanges Jab predominantly
force the spins at Mn A and Mn B sites to be parallel, a sum

of these two energies, i.e., Esia
E at Mn A and Esia

E at Mn B
�EsiaA

E and EsiaB
E � governs the magnetic anisotropy in the col-

linear spin phases. We show the �i dependence of energies
EsiaA

E , EsiaB
E , and EsiaA+B

E =EsiaA
E +EsiaB

E in Fig. 13�e�. This fig-
ure actually shows that the energy minimum of EsiaA+B

E ��i� is
located at the b axis ��i=� /2�.

In fact, this is a consequence of the MnO6 tilting. Without
tilting, the energy sum EsiaA+B

E ��i� is always zero irrespective
of �i �see Fig. 13�f��. Although both EsiaA

E ��i� and EsiaB
E ��i�

have strong �i dependence, they perfectly cancel out. The
above discussion is valid also for Mn C and Mn D sites in
another Mn-O plane because of the presence of a mirror
plane between two Mn-O planes. We conclude that the com-
bination effect of the single-ion anisotropies Hsia=Hsia

D

+Hsia
E and the GdFeO3-type distortion is an origin of the

easy-axis spin anisotropy in the AFM�A� and sinusoidal
phases.
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FIG. 13. �Color online� �a� Local hard magnetization axes �solid
arrows� and local easy magnetization axes �dashed arrows� at Mn A
and Mn B sites due to the single-ion anisotropies, Hsia=Hsia

D +Hsia
E .

Owing to the tilting of MnO6 octahedra, these axes deviate from the
cubic x, y and z axes. �b� Polar representation of the S=2 classical-
vector spin. The angle �i is defined with respect to the orthorhom-
bic a and b axes. ��c� and �d�� �i dependence of energies Esia

E , Esia
D ,

and Ecub at �c� Mn A and �d� Mn B for a spin sticking on the ab
plane. ��e� and �f�� �i dependence of energies EsiaA

E , EsiaB
E , and

EsiaA
E +EsiaB

E in the �e� presence and �f� absence of the MnO6 tilting.
Here EsiaA

E and EsiaB
E are the energies of Hsia

E at Mn A and Mn B
sites, respectively. For the MnO6 tilting, we use the structural pa-
rameters of EuMnO3 taken from Ref. 87.
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F. Sinusoidal collinear spin phase

In this section, we discuss the nature and origin of the
sinusoidal collinear spin phase in the intermediate tempera-
ture regime. In this phase, the spins are aligned along the b
axis with sinusoidally modulated amplitudes. We find that for
its emergence, the single-ion anisotropy term Hsia

E is essen-
tially important. In Fig. 14, we display evolution of each
magnetic phase as a function of the anisotropy parameter E.
This figure shows that the temperature range over which the
sinusoidal collinear phase emerges increases as E is in-
creased.

As we have discussed in the previous section, when the
GdFeO3-type distortion is present, the term Hsia

E generates an
easy-axis spin anisotropy along the b axis in the collinear
spin phase. In fact, this easy-axis anisotropy is decisively
important for the stability of the sinusoidal collinear phase.
To see the importance of easy-axis anisotropy, we have per-
formed calculations for the cubic-symmetry case, i.e., the
case without GdFeO3-type distortion. We set a=b, xO1

=0,
yO1

=0.5, xO2
=0.75, yO2

=0.25, and zO2
=0 for the local-axis

vectors �i, �i, and �i in Eqs. �7�–�9�. As a result, the local
axes 	i, 
i, and �i attached to the ith MnO6 are equivalent to
the crystallographic x, y, and z axes. In this case, the term
Hsia does not generate an easy-axis anisotropy, and the sinu-
soidal collinear phase indeed disappears. Instead, we further
add a term of the easy-axis anisotropy HK by hand to Hamil-
tonian �2�, which is given by

HK = − K�
i

Sbi
2 , �27�

with K�0. We obtain similar evolution of the sinusoidal
collinear phase as a function of the parameter K �see Fig.
15�. Note that when K=0, the sinusoidal collinear phase van-
ishes, indicating that the GdFeO3-type distortion or the easy-
axis anisotropy is indispensable for its emergence. We indeed
notice that in the experimental phase diagram of Fig. 1�b�,

the temperature range of the sinusoidal collinear phase is
larger in a material with stronger GdFeO3-type distortion, or
a smaller R ion.

The above facts can be understood easily as previously
discussed in Ref. 105. As temperature is lowered, the first
ordered state has spins aligned along the easy axis, i.e., the b
axis. As temperature is further lowered, the spin length
grows. Then, the system develops a long-range transverse
sinusoidal order to satisfy the competition between Jab and
J2. This requires to enter the cycloidal spin phase. The tem-
perature range of the sinusoidal collinear phase increases as
the anisotropy K is increased because the longer spin length
is required to overcome the larger K, which in turn requires
going to lower temperature.

IV. CONCLUSION AND DISCUSSION

In summary, we have studied the magnetoelectric phase
diagrams of the perovskite manganites RMnO3 by construct-
ing a microscopic spin model to describe the Mn 3d-spin
systems. We have analyzed this model by using the Monte
Carlo method for the thermodynamic properties and by nu-
merically solving the Landau-Lifshitz-Gilbert equation for
the ground-state properties. Considering that the
GdFeO3-type lattice distortion enhances the second-neighbor
antiferromagnetic exchanges J2, we have studied the T-J2
phase diagrams and have obtained diagrams in good agree-
ment with the experimental ones including two kinds of mul-
tiferroic phases, i.e., the ab-cycloidal spin phase with Pa and
the bc-cycloidal spin phase with Pc.

We have discussed a mechanism of the electric polariza-
tion flop. The ab-cycloidal spin state is stabilized by the
single-ion anisotropy Hsia

D and the DM interaction HDM
ab with

vectors on the in-plane bonds. Here the single-ion anisotropy
Hsia

D makes magnetization along the c axis hard. On the other
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FIG. 14. �Color online� T-E phase diagram obtained by the
Monte Carlo analysis of Hamiltonian �2�. Here the parameter E is a
variable which expresses the strength of single-ion anisotropy Hsia

E ,
and J2 is fixed at 0.80 meV. Values of other model parameters in Eq.
�2� are fixed at the values listed in Table III �see Sec. II�. The
temperature range over which the sinusoidal collinear spin phase
emerges increases as E is increased.
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hand, the bc-cycloidal spin state is stabilized by the DM
interaction HDM

c with vectors on the out-of-plane bonds. As
the spiral rotation angle increases with increasing J2, the en-
ergy gain due to HDM

ab is reduced in the ab-cycloidal spin
state. In this way, the increasing GdFeO3-type distortion de-
stabilizes the ab-cycloidal spin state. This leads to the
cycloidal-plane flop from ab to bc, and consequently to the
electric-polarization flop from Pa to Pc.

We have demonstrated that the regime of bc-cycloidal
spin phase with Pc increases with increasing �c and have
revealed that the phase diagram of Gd1−xTbxMnO3 with a
large Pc regime is reproduced for a rather large value of �c
=0.38 meV, while that of Eu1−xYxMnO3 with a small Pc
regime is reproduced for a smaller value of �c=0.30 meV.
So far existence of the two different ferroelectric phases with
Pa and Pc in RMnO3 compounds have often been connected
with the role of f-electron moments on the rare-earth ions.
However our result indicates that the rare-earth magnetism
plays a relatively minor role.

By investigating the detailed structures of the cycloidal
spin states, we have found that the spiral rotation angles are
not uniformly the same but are significantly distributed due
to the single-ion anisotropies. The experimentally observed
direction-dependent magnitude of spin-correlation peak is
ascribed to this rotation-angle distribution instead of the el-
liptical modulation of the spin cycloid as claimed so far.

By examining the effect of single-ion anisotropies, we
have found that because of the tilting of MnO6 octahedra, the
single-ion anisotropies, Hsia=Hsia

D +Hsia
E , energetically favor

spins pointing along the b axis in the AFM�A� and sinusoidal
collinear phases. We also found the sinusoidal collinear spin
phase is stabilized by the easy-axis spin anisotropy along the
b axis generated by the single-ion anisotropy term Hsia in the
distorted lattice structure of GdFeO3 type.

The microscopic model proposed here must be helpful for
studying origins and mechanisms of several intriguing mag-
netoelectric phenomena discovered in the present manganite
compounds, e.g., origins of the electrically activated spin
excitation �electromagnon�,106 mechanisms of the magnetic-
field-induced electric polarization flop,107–109 and origins of
the giant magnetocapacitance effect.41,42 Discussion and
analysis of the spin-wave dispersions obtained in the
neutron-scattering experiments110,111 are also an issue of in-
terest.

Now, we would like to compare our work with the recent
theoretical work done by Dagotto and co-workers, which is
based on the two-orbital double-exchange model with addi-
tional terms.11,35 In Ref. 11, they added the DM-interaction
term with DM vectors coupling to the lattice and reproduced
the cycloidal spin order. On the other hand, in Ref. 35, they
considered very weak second-neighbor spin exchanges to re-
produce a successive emergence of the AFM�A�, cycloidal,
and AFM�E� phases, in the ground state. However, in those
studies, they failed to reproduce the cycloidal-plane flop and
the sinusoidal collinear phase. In addition, within their
theory, it seems hard to explain the monotonic increase of the
propagation wave number qm

Mn �or the spiral rotation angle
�s� with increasing GdFeO3-type distortion observed in
experiments.18,40,80 On the other hand, we consider that the
second-neighbor exchanges J2 play a predominant role in

stabilizing the cycloidal spin state, and the ferroelectric po-
larization subsequently emerges through the inverse DM
mechanism. Our model in which the strength of J2 scales
with the orthorhombic lattice distortion naturally explains the
observed monotonic increase of qm

Mn. Moreover, the spiral
rotation angle determined by the ratio Jab /J2 turns out to
control the competition between the ab- and bc-cycloidal
spin states, resulting in the electric-polarization flop. This
indicates that consideration of the second-neighbor ex-
changes J2 is essentially important to describe the magneto-
electric coupling in the manganite system. Importance of the
further exchanges is peculiar in the present manganites. This
is owing to the weak nearest-neighbor exchanges resulting
from the cancellation of ferromagnetic and antiferromagnetic
contributions from the eg- and t2g-orbital sectors due to the
t2g
3 eg

1 electron configuration. Indeed the values of Jab
�1.6 meV in LaMnO3 �Refs. 112 and 113� is much smaller
than Jab=13.3 meV in LaTiO3,114 which is a S=1 /2 G-type
antiferromagnet with t2g

1 electron configuration.
It is also worthy mentioning that on the basis of the

LDA+U calculation, Solovyev proposed that the third-
neighbor spin exchange J3 �see Fig. 16� is increased by the
GdFeO3-type distortion, and this exchange also plays an im-
portant role for stability of the spiral spin order.115,116 In this
case, the propagation wave vector of the magnetic spiral is
determined by the frustration among three exchanges Jab, J2,
and J3, and its wave number qm is given by

qm =
1

�
cos−1� Jab

2�J2 + J3�� . �28�

To check whether the consideration of J3 affects the results
presented in this paper, we have examined the effects of J3.
We have found that once the wave number qm is determined,
the same results are obtained.
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APPENDIX A

In this Appendix, we calculate the values of superex-
change parameters, Jab and Jc, for RMnO3 by following the
formulation given by Gontchar and co-workers.82,83 In
RMnO3, the ground-state orbital state of each Mn3+ ion is
dominantly determined by local coordinations of surround-
ing oxygens with the Jahn-Teller distortion because of the
strong electron-lattice coupling. The wave functions of occu-
pied and hole orbitals at the nth Mn3+ site, �1n and �2n, can
be written as linear combinations of the twofold eg-orbital
wave functions,117

�1n = sin
�n

2
�n� + cos

�n

2
�n�, �A1�

�2n = cos
�n

2
�n� − sin

�n

2
�n�, �A2�

with

�n� =
1

2
�3�n

2 − r2� , �A3�

�n� =
�3

2
�	n

2 − 
n
2� , �A4�

where 	n, 
n, and �n are coordinates with respect to the local
axes attached to each MnO6 octahedron.

The values of orbital angle �n can be derived from ex-
perimental data using parameters of lattice distortions,

cos �n =
Q�n

�Q�n
2 + Q�n

2
, �A5�

sin �n =
Q�n

�Q�n
2 + Q�n

2
, �A6�

with Q�n and Q�n being symmetrized Jahn-Teller distortions
on each MnO6 octahedron of 3z2−r2 and x2−y2 types, re-
spectively.

In the orthorhombic RMnO3 crystal described by the Pbnm
space group, the Jahn-Teller distortions Q�n and Q�n are
given by

TABLE IV. Structural parameters for RMnO3. Here rab
l and rab

s denote lengths of the longer and shorter in-plane Mn-O bonds, respec-
tively. References from which the data are taken are shown in the second column.

RMnO3 IR �Å� a �Å� b �Å� c �Å� xO2
yO2

zO2
� �deg� �c �deg� �ab �deg� rc �Å� rab

l �Å� rab
s �Å�

LaMnO3
a 1.216 5.5367 5.7473 7.6929 0.7256 0.3066 0.0384 107.06 155.48 155.11 1.9680 2.178 1.907

LaMnO3
b 1.216 5.5405 5.7458 7.6998 0.7261 0.3069 0.0388 106.43 155.28 155.04 1.9706 2.184 1.904

PrMnO3
c 1.179 5.4491 5.8129 7.5856 0.7151 0.3174 0.0430 110.93 152.36 150.51 1.9530 2.210 1.909

PrMnO3
b 1.179 5.4500 5.8295 7.5805 0.7151 0.3179 0.0433 111.41 151.59 150.36 1.9549 2.217 1.910

NdMnO3
c 1.163 5.4170 5.8317 7.5546 0.7141 0.3188 0.0450 111.52 150.86 149.63 1.9514 2.218 1.905

NdMnO3
d 1.163 5.416 5.849 7.543 0.7132 0.3204 0.0450 112.09 150.3 149.2 1.951 2.227 1.905

NdMnO3
b 1.163 5.4168 5.8518 7.5479 0.7124 0.3199 0.0447 112.67 150.38 149.27 1.9520 2.223 1.911

SmMnO3
d 1.132 5.362 5.862 7.477 0.7076 0.3241 0.0485 114.37 147.6 147.0 1.947 2.232 1.910

EuMnO3
d 1.120 5.340 5.866 7.448 0.7065 0.3254 0.0487 114.82 146.54 146.47 1.944 2.234 1.907

EuMnO3
b 1.120 5.3437 5.8361 7.4619 0.7055 0.3247 0.0485 114.55 147.35 146.45 1.9438 2.220 1.912

GdMnO3
d 1.107 5.318 5.866 7.431 0.7057 0.3246 0.0508 115.74 145.6 146.0 1.944 2.229 1.915

TbMnO3
c 1.095 5.2931 5.8384 7.4025 0.7039 0.3262 0.0510 115.47 145.06 145.36 1.9401 2.221 1.905

DyMnO3
c 1.083 5.2785 5.8337 7.3778 0.7028 0.3276 0.0521 115.69 143.23 144.70 1.9437 2.224 1.903

DyMnO3
b 1.083 5.2802 5.8448 7.3789 0.7013 0.3249 0.0518 118.86 145.37 145.03 1.9322 2.210 1.919

YMnO3
c 1.075 5.2418 5.8029 7.3643 0.7005 0.3266 0.0520 116.17 143.51 144.55 1.9385 2.200 1.904

HoMnO3
c 1.072 5.2572 5.8354 7.3606 0.7013 0.3281 0.0534 116.28 142.47 144.08 1.9435 2.222 1.905

ErMnO3
c 1.062 5.2262 5.7932 7.3486 0.7003 0.3266 0.0542 116.18 142.82 143.92 1.9382 2.199 1.903

ErMnO3
a 1.062 5.2395 5.8223 7.3357 0.6997 0.3343 0.0563 113.59 141.59 142.05 1.942 2.248 1.891

TmMnO3
e 1.052 5.2277 5.8085 7.3175 0.6984 0.3372 0.0571 112.75 141.15 141.17 1.940 2.255 1.886

YbMnO3
e 1.042 5.2163 5.7991 7.2992 0.6979 0.3394 0.0580 112.07 140.27 140.51 1.940 2.263 1.879

LuMnO3
e 1.032 5.1972 5.7868 7.2959 0.6989 0.3415 0.0575 110.14 139.56 140.36 1.944 2.269 1.862

aReference 84.
bReference 87.
cReference 85.
dReference 86.
eReference 88.
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Q� =
1

�12
�c −

1
�2

�a + b�� , �A7�

Q� = �2�vxa + vyb� , �A8�

with

vx =
3

4
− xO2

, �A9�

vy =
1

4
− yO2

. �A10�

Here, vx and vy are shifts of the in-plane oxygen environ-
ment, xO2

and yO2
are coordination parameters for the in-

plane oxygen ions, and a, b, and c are the lattice parameters
in Pbnm axes �see Table IV�.

The Jahn-Teller distortion in RMnO3 causes a C-type or-
bital ordering, for which the orbital angles satisfy the follow-
ing relation:

�1 = �2 = − �3 = − �4 = � . �A11�

Within this framework, the superexchange parameters de-
pend on the lattice distortions and the orbital structure as

Jab =
J0 cos2 �ab

rab
10 �1 − � cos � + ��cos2 � +

3

4
�� ,

�A12�

Jc =
J0 cos2 �c

rc
10 �1 + 2� cos � − � cos2 �� , �A13�

where �ab and �c are means for the in-plane and out-of-plane
Mn-O-Mn bond angles, respectively, and rab and rc are
means for the in-plane and out-of-plane Mn-O bond lengths,
respectively. For the values of parameters appeared in these

TABLE V. On the basis of the simple two-dimensional J1-J2 classical Heisenberg model, the values of J2

in TbMnO3, DyMnO3, YMnO3, and several solid solutions are estimated from the experimental data of the
spiral wave numbers qm

Mn and theoretically calculated values of Jab. Here, IR denotes the ionic radius of the
R ion, and � is the spiral rotation angle calculated from qm

Mn as �=180° �qm
Mn. The references from which the

data of qm
Mn are taken are presented in the last column. The effective R-site radii in the solid solutions are

deduced by interpolation.

RMnO3 IR �Å� 2qm
Mn � �deg� J1 �meV� = �2 cos ��−1 J2=J1 �meV� Ref.

TbMnO3 1.095 0.56 50.4 0.79 0.784 0.62 40

DyMnO3 1.083 0.78 70.2 0.76 1.47 1.12 40

YMnO3 1.075 0.87 78.3 0.77 2.466 1.90 119

Eu0.6Y0.4MnO3 1.102 0.58 52.2 0.817 0.815 0.67 18

Tb0.32Dy0.68MnO3 1.087 0.678 61.0 0.768 1.032 0.79 80

Tb0.41Dy0.59MnO3 1.088 0.663 59.6 0.786 0.990 0.78 80

Tb0.50Dy0.50MnO3 1.089 0.656 59.0 0.773 0.972 0.75 80
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FIG. 17. �Color online� Calculated superexchange parameters,
Jab and Jc, plotted as functions of the ionic R-site radius. Structural
data used in the calculation are taken from Refs. 84–88.
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formulas, we use J0=1.456 eV Å, ��1.0 and ��4.5 accord-
ing to Refs. 82 and 83.

The values of Jab and Jc calculated using structural data in
Refs. 84–88 are plotted in Fig. 17 as functions of the ionic
R-site radius. Here, the values for LaMnO3 were obtained
from the spin-wave dispersion measured in the neutron-
scattering experiments as Jab=1.66 meV and Jc=1.16 meV
in Ref. 112, and Jab=1.67 meV and Jc=1.21 meV in Ref.
113. The values for PrMnO3 were also obtained in the
neutron-scattering experiment as Jab=1.12–1.19 meV and
Jc=1.2–1.29 meV in Ref. 118. The calculated values for
LaMnO3 and PrMnO3 are in good agreement with these ex-
perimental values. We note that both Jab and Jc are nearly
constant in the region of relatively small-sized R ions, e.g.,
R=Eu, Tb, Dy, and Y, in/near which the multiferroic phases
emerge.

APPENDIX B

In this Appendix, we estimate the values of parameter J2
for RMnO3. The spiral spin orders in RMnO3 have turned out
to be realized due to the competition between the nearest-
neighbor ferromagnetic coupling Jab and the second-
neighbor antiferromagnetic coupling J2 in the ab plane.
Along the c axis, the spins are forced to be aligned antifer-
romagnetically because of the strong antiferromagnetic cou-
pling Jc. Thus the propagation wave number and the rotation
angle of the magnetic spiral are dominantly determined by
the ratio J2 /Jab although magnetic anisotropies and DM in-
teractions should modulate them to some extent. Under this
circumstance, we can roughly estimate the values of J2 with
the aid of the simple J1-J2 classical Heisenberg model on the
anisotropic triangular lattice �see inset of Fig. 18�. The
Hamiltonian is given by

HJ1J2
= − J1�

	i,j


n.n.

Si · S j + J2 �
		i,j



n.n.n.

Si · S j + K�
i

Szi
2 . �B1�

Here, J1 and J2 are the ferromagnetic exchange for the
nearest-neighbor bonds and the antiferromagnetic exchange
for the second-neighbor �diagonal� bonds, respectively. We
introduce the third term with K�0 to determine the basal
spiral plane by making the magnetization along the z axis
hard.

Within this model, the energy for spiral spin state per site
is given as a function of the spiral rotation angle �,

E���/S2 = − 2J1 cos � + J2 cos�2�� . �B2�

From a saddle-point equation, dE��� /d�=0, we obtain a re-
lation cos �s=J1 / �2J2�, where �s is the rotation angle of spi-
ral spin state with a minimum energy. This formula implies
that a spiral spin state emerges when J2 /J1�0.5, while when
J2 /J1�0.5 a ferromagnetic state is stabilized.

We estimate the values of J2 in TbMnO3, DyMnO3,
YMnO3, and several solid solutions with the use of experi-
mentally measured spiral wave numbers qm

Mn �Refs. 18, 40,
and 80� and the values of J1 �Jab� calculated in Appendix A
�see Table V�. In Fig. 18, we plot them as a function of the
ionic R-site radius, which exhibits a monotonic increase with
decreasing R-site radius. We can deduce the values even for
RMnO3 with R=Eu and Gd by extrapolating the data, al-
though their ground-state magnetic structure is not spiral but
AFM�A�.

When qm
Mn is small, the energy difference between the

spiral spin state and the AFM�A� state would be so small that
the DM interaction and the single-ion anisotropy can affect
their energetics significantly. Both of these two favor the
AFM�A� state. The collinearly aligned spins parallel to the b
axis in the AFM�A� state can benefit from both the easy
magnetization b axis due to the single-ion anisotropy and the

TABLE VI. Energy levels �E and ∆ for Mn3+ ion surrounded
by octahedrally coordinated oxygens obtained in the optical absorp-
tion measurements from Refs. 89 and 90. Calculated orbital reduc-
tion factor x and coupling constant of the spin-orbit interaction �
are also listed.

�E �meV� ∆ �meV� x � �meV� Ref.

353.4 2530.8 0.83 8.75 89

349.7 2083.2 0.71 7.38 90
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FIG. 19. �Color online� Calculated single-ion anisotropy param-
eters, D and E, plotted as functions of the ionic R-site radius. Struc-
tural data used in the calculation are taken from Refs. 84–88. Op-
tical absorption data are taken from different references between �a�
and �b�, i.e., Ref. 89 for �a� and Ref. 90 for �b�.
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DM vectors on the out-of-plane bonds with a large a com-
ponent �c. Therefore, the estimation of J2 based on the pure
J1-J2 model performed here would involve ambiguities par-
ticularly near the AFM�A�-cycloidal phase boundary or in
TbMnO3. The actual value of J2 in TbMnO3 is expected to
be slightly larger than the above-calculated value of J2
=0.62 meV.

APPENDIX C

In this Appendix, we calculate the values of single-ion
anisotropy parameters D and E in RMnO3 with the use of
formulas proposed by Matsumoto.89 The parameters D and E
can be calculated within the second-order perturbation theory
in terms of the spin-orbit interaction. They are given by

D = − 3� �2

�E
+

4�2

3�
�cos �n, �C1�

E = −
�3�2

�E
sin �n, �C2�

where � is the coupling constant of the spin-orbit interaction,
and �n is the orbital angle which represents the orbital wave
functions at the nth Mn3+ site as defined in Appendix A.
Here, �E and ∆ are energy levels for the two excited states
of Mn3+ ion, 3T1g �d�4� and 5T2g �d�2d2�, measured from
the ground-state 5Eg �d�3d� level, and satisfy the following
relation:120

�E = 6B + 5C − � , �C3�

where B and C are the Racah parameters. Using the values
for free Mn3+ ion, B0=120 meV and C0=552 meV, we can
obtain the orbital reduction factor x from Eq. �C3� by setting
B=xB0 and C=xC0. Then, the value of � in the RMnO3
compounds can be obtained from �=x�0 with �0
=10.5 meV being the coupling constant for free Mn3+ ion.

The values of �E and ∆ for Mn3+ ion surrounded by
octahedrally coordinated oxygens are experimentally ob-
tained in the optical absorption spectra.89,90 In Table VI, we
list the values of �E and ∆ taken from two different refer-
ences as well as the values of x and �. Using these parameter
values and structural data in Refs. 84–88, we calculate D and
E for RMnO3 with various R ions, which are plotted in Figs.
19�a� and 19�b� as functions of the ionic R-site radius. Note
that the difference of �E and ∆ between two references
causes a small difference of calculated values of D and E. In
our model calculation, we use the values obtained from the
optical data in Ref. 90, because with these values, the calcu-
lation reproduces the experimental phase diagrams with a
reasonable set of the DM parameters, which is consistent
with the band calculation94 and the ESR experiments96,97 as
discussed in Sec. II A. On the other hand, with the values
obtained from the optical data in Ref. 89, we need to assume
rather large DM vectors on the out-of-plane bonds to repro-
duce the experimental phase diagrams.
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